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The expressions for bulk modulus, its first and second pressure derivatives for 
elemental semiconductors are derived using the ab initio pseudopotential approach to 
the total crystal energy within the framework of local Density Functional formalism. 
The expression for the second pressure derivative of the bulk modulus for four-fold 
crystal structures are derived for the first time within the pseudopotential framework. 
The computed results for the semiconductors under study are very close to the 
available experimental data and will be useful in the study of equation of states. 
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1. INTRODUCTION  
 

The study of the isothermal bulk modulus and its pressure derivatives of the 
binary compounds is an important tool for the study of various physical 
properties [1, 2], thermal properties [3, 4] and the Equation Of States (EOS) 
[5-8]. The reason being that the bulk modulus is defined as the derivative of 
volume therefore it is more sensitive to the variation in EOS than the 
volume itself. This provides a basis for studying the Earth’s deep interior 
[9]. In the past few years, it has become possible [10] to compute lattice 
constants, bulk moduli, cohesive energies, phonon spectra and other static 
properties knowing only the atomic numbers and masses of the atoms 
composing the materials. An empirical relation for the bulk moduli was 
obtained by Cohen [11] using scaling arguments for the relevant energy and 
volume. Later on Lam et al. [12] have explored the microscopic origin of the 
above empirical relation excluding correlation effects.  
 The purpose of this paper is to derive the expressions for bulk modulus, 
its first and second pressure derivatives for elemental semiconductors within 
the pseudopotential framework. For this in part  2, the ab initio 
pseudopotential approach to the total crystal energy is presented and the 
resulting expression for total crystal energy is written as a function of the 
Seitz-Wigner radius. In part  3, using the above expression for total crystal 
energy, the relations for bulk modulus and its pressure derivatives are 
worked out. The results of numerical calculation based on above derived 
relations are very close to the available data. 
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2. PSEUDOPOTENTIAL APPROACH TO TOTAL CRYSTAL ENERGY 
 

The ab initio pseudopotential approach to the total crystal energy calculation is 
presented. Using this approach the expression for the total crystal energy will 
be derived from the variationally determined valence electron eigen values and 
charge densities. The large and geometry-insensitive core contributions are 
explicitly projected out of the energy expression by using a pseudopotential 
formalism. The local Density Functional (DF) formalism for the exchange and 
correlation potential is self consistently employed in the derivation. 
 Most importantly, a drastic simplification of the energy expression is 
made by formulating the relevant expression for the total crystal energy in 
momentum space. The virtue of the momentum space formalism rests on its 
simplicity. Any real space integral is replaced by a simple summation over 
reciprocal vectors. The convergence of the summation is very rapid because 
of the smooth pseudopotential used in place of the real potential, which is 
singular at the origin. 
 This expression is particularly designed to be applied with the pseudo-
potential method and a plane-wave basis set. A plane wave basis set is used to 
represent the (pseudo) valence wave functions. Such a basis set describes the 
charge density in the valence region to the same degree of accuracy for 
different crystal structures. In other words, the basis is not biased toward a 
particular crystal structure, which is usually difficult to achieve in other 
choices of basis sets. Furthermore, the angular dependence of the charge 
density is well accounted for, and there is no need for a spherical averaging 
procedure of the charge density which may introduce appreciable error in 
describing highly directional covalent bonds [13-16]. The present formalism, 
however, is readily applicable to calculations with mixed basis sets (e.g. plane 
wave plus Gaussian) as well. This enables one to extend the calculations to the 
case of transition metals.  
 Within the pseudopotential framework [17], following the conventional 
DF formalism [18, 19] the total crystal energy (E); defined as the total 
energy difference between the solid and isolated cores or the negative of the 
sum of ionization potentials of the valence electrons plus the cohesive 
energy; is given by: 
 

 e e e e ion ion ion XCE T V V V E        (1) 
 

The individual contributions are interpreted as the kinetic energy of 
electrons, the Coulomb energy due to electron-electron interaction, the 
energy due to electron-ion interaction, the Coulomb energy due to the ion-
ion interaction and the electronic exchange-correlation energy. Since the 
effect of core electrons is included in the pseudopotentials, the term 
‘electrons’ used in this paper refers to the valence electrons only. The 
Slaters X method [20] is used in deriving Exc. 
 To obtain the total crystal energy (E) as a function of the Seitz-Wigner 
radius (R) it is useful to write o      for systems where the band 

structure is not too far from the free-electron dispersion, with o  being the 

average eigenvalue from the free-electron dispersion and    is the correction 
term. Then the final expression for total crystal energy becomes: 
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where    1/3 4/3 2 4/3 23 / 2 9 / 4 0.9163S SA Z F Z Z F Z      with FS being 

the structure dependent Ewald constant and for diamond structure 

FS  1.671,    2/3 5/3 5/33 / 5 9 / 4 2.2099B Z Z  , 

     3 / 4 0 0.2387 0PS PSC ZU G ZU G       2
D V G  is a positive 

number, with  V G  being the screened pseudopotential form factor and the 

last term is the correlation term with f  0.88Z, g  Z 1/3 and h  7.80. 
 
3. RELATIONS FOR BULK MODULUS AND ITS PRESSURE 

DERIVATIVES 
 

On using equation (2) for the total crystal energy along with the equilibrium 
relation: 
 

 
 

4
2 5

2
2 3 2 0o o o

fgR
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
 (3) 

 

The bulk modulus can readily be calculated using the following relation:  
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where R0 and a,0 are the equilibrium Seitz-Wigner radius and equilibrium 
volume respectively. Here the prime denotes differentiation w.r.t. atomic 
volume. The equilibrium condition (3) is used either to eliminate the 
dependence on C or D. 
 The first and second pressure derivatives oK  and oK respectively are 
then given by: 
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Using equations (2)-(3) in the above definitions: 
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The last term in equations (4, 5 and 6) containing constants f, g and h 
represents the effect of correlation on K0, 0K  and 0K . 
 
4. RESULTS AND DISCUSSION 
 

Analytic expressions for the bulk modulus, its first and second pressure 
derivatives are derived from the ab initio pseudopotential total energy 
formalism. These expressions are written explicitly as a function of 
equilibrium Seitz-Wigner radius alone. In these expressions we have 
included the contribution due to correlation term, which was omitted by 
Lam et al. [12]. The agreement (Tables 1 and 2) between the numerical and 
experimental values is very good. 
 

Table 1 – Comparison of calculated and experimental values of bulk modulus 
K0. The bulk moduli are calculated using equation (4)  
 

COMPOUNDS R0 in a.u.  
K0 in GPa 
Exp. [21] Calc. 

C 2.09 442.0 444.3 
Si 3.18 98.0 100.1 
Ge 3.32 77.2 87.4 
-Sn 3.81 53.0 55.8 
 
Table 1 – Comparison of calculated and experimental values of first pressure 
derivative 0K  and second pressure derivative 0K  of bulk modulus. The first 
pressure derivatives of bulk modulus are calculated with equation (5) using 
the experimental value for K0. The second pressure derivatives of bulk 
modulus are calculated with equation (6) using the experimental value for 
K0 and experimental/calculated value for 0K . 
 

COMPOUNDS 
0K  

0K  in GPa – 1 
Calc. Exp. [21] Calc. 

C 4.69 4.04 – 0.030 
Si 4.24 4.16 – 0.072 
Ge 4.55 4.31 – 0.125 
-Sn  4.08 – 0.106 
 

 The calculated values of 0K , first pressure derivatives of bulk modulus, 
are found to be greater than 4 for all the semiconductor binary compounds 
under study. These values are in accordance with the experimental values of 

0K  which remain between 4 and 6 for most of the crystals studied so far. It 

is worth noticing that the magnitude of the values of 0K , second pressure 

derivatives of bulk modulus, are less than the values of 0K  in all the 
semiconductor binary compounds under study. Moreover for all the 
semiconductors under study the values of 0K , 0K  are negative which is 

consistent with the study of Anderson et al. [6]. Thus these values of 0K   
will be much helpful in the study of EOS and to understand the elastic 
properties of these semiconductors. 
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